Genotoxicity of the Auger electron emitter I-123-iododeoxyuridine in vitro

Marcus Unverricht¹, Ulrich Giesen², Eberhard Kümmerle¹, Ekkehard Pomplun¹, Ralf Kriehuber¹

OBJECTIVES: The biological effectiveness of Auger electron emitters (AEE) is attributed to the numerous short-range electrons released during the decay of the radionuclide. Damage on cellular level depends largely on the intracellular distribution of the radionuclides. AEE located exclusively in the cytoplasm produce low-LET type cell survival curves, whereas DNA-associated AEE cause high-LET type survival curves. To determine whether AEE induce high-LET type genotoxic effects micronucleus induction and γ -H2AX formation were analyzed after exposure to I-123-iododeoxyuridine (I-123-UdR) in comparison to high- and low-LET radiation.

MATERIALS AND METHODS: Human T-lymphoma Jurkat cells were either exposed to I-123-UdR (0.5-50 kBq/ml) for 20 h or irradiated with different doses of low-LET Cs-137 γ -rays or high-LET Am-241 α -particles. Cells were assayed for micronucleus formation (Cytochalasin B assay) employing automated image analysis (MetaSystems, Germany). The γ -H2AX foci were quantified by measuring the mean signal intensity of γ -H2AX foci per cell using flow cytometry and by counting the number of γ -H2AX foci with a fluorescence microscope.

RESULTS: In contrast to γ - and α -irradiation the numbers of γ -H2AX foci per cell showed a much more pronounced increase after exposure to I-123-UdR. However, the mean intensity of γ -H2AX signals per cell, as measured by flow cytometry, was very similar for exposure to I-123-UdR and α -particles. Single γ -H2AX foci induced by I-123-UdR appear to be smaller and/or less intense stained than those after α -irradiation and resemble γ -H2AX foci induced by γ -rays. Micronucleus induction was almost identical for all three investigated radiation qualities.

CONCLUSIONS: I-123-UdR is a very potent inducer of γ -H2AX foci in comparison to γ - and α -radiation. Taken into account the very low dose rate of I-123-UdR exposure the effect is even more pronounced. Micronucleus induction does not depend on radiation quality in Jurkat cells.

Supported by the Federal Ministry of Education and Research, BMBF

¹Abteilung Sicherheit und Strahlenschutz, Forschungszentrum Jülich, 52425 Jülich, Germany

² Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany